No description available
At this point everyone and their mum's are talking about MCP, this repo is just a collection of experiments with it.
Mostly focused around parctical and applied aspects of MCP than theory/ architecture behind.
The simplest way is to use a simple client/ library that allows you to get your feet wet as soon as possible.
I'm biased but some of the ways I recommend trying is:
@huggingface/tiny-agents
(for TS fans)huggingface_hub[mcp]
(for python fans)Let's get started:
Step 1: Clone this repo
git clone https://github.com/Vaibhavs10/experiments-with-mcp && cd experiments-with-mcp
Step 2 (TS): Try any of the examples
For example you can run the image-gen example like this:
npx @huggingface/tiny-agents run ./image-gen
Step 2 (Python):
uv pip install "huggingface_hub[mcp]>=0.32.0"
tiny-agents run ./image-gen
In the examples above we used hosted models via Hugging Face Inference Providers but in reality you can use any tool calling enabled LLM (even those running locally).
Arguably the best way to run local models is llama.cpp
On a mac, you can install it via:
brew install llama.cpp
Once installed you can use any LLMs
llama-server --jinja -fa -hf unsloth/Qwen3-30B-A3B-GGUF:Q4_K_M -c 16384
Once the server is up, you can call tiny agents.
The only change you need is in the agents.json
file
{
"model": "unsloth/Qwen3-30B-A3B-GGUF:Q4_K_M",
+ "endpointUrl": "http://localhost:8080/v1",
- "provider": "nebius",
"servers": [
{
"type": "sse",
"config": {
"url": "https://evalstate-flux1-schnell.hf.space/gradio_api/mcp/sse"
}
}
]
}
That's it, you can now run your agent directly!
npx @huggingface/tiny-agents run ./local-image-gen
and.. you can do the same thing via huggingface_hub
MCPClient too:
tiny-agents run ./local-image-gen
That's it! go ahead, give it a shot!
No configuration available
Related projects feature coming soon
Will recommend related projects based on sub-categories